

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition)

By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel

[Download now](#)

[Read Online](#)

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition)

By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel

OpenGL ® SuperBible, Fourth Edition , begins by illuminating the core techniques of “classic” OpenGL graphics programming, from drawing in space to geometric transformations, from lighting to texture mapping. The authors cover newer OpenGL capabilities, including OpenGL 2.1’s powerful programmable pipeline, vertex and fragment shaders, and advanced buffers. They also present thorough, up-to-date introductions to OpenGL implementations on multiple platforms, including Windows, Mac OS X, GNU/Linux, UNIX, and embedded systems.

Coverage includes

- An entirely new chapter on OpenGL ES programming for handhelds
- Completely rewritten chapters on OpenGL for Mac OS X and GNU/Linux
- Up-to-the-minute coverage of OpenGL on Windows Vista
- New material on floating-point color buffers and off-screen rendering
- In-depth introductions to 3D modeling and object composition
- Expert techniques for utilizing OpenGL’s programmable shading language
- Thorough coverage of curves, surfaces, interactive graphics, textures, shadows, and much more
- A fully updated API reference, and an all-new section of full-color images

You’ll rely on this book constantly—whether you’re learning OpenGL for the first time, deepening your graphics programming expertise, upgrading from older versions of OpenGL, or porting applications from other environments.

Now part of the OpenGL Technical Library—The official knowledge resource for OpenGL developers

The OpenGL Technical Library provides tutorial and reference books for OpenGL. The Library enables programmers to gain a practical understanding of OpenGL and shows them how to unlock its full potential. Originally developed by SGI, the Library continues to evolve under the auspices of the OpenGL Architecture Review Board (ARB) Steering Group (now part of the Khronos

Group), an industry consortium responsible for guiding the evolution of OpenGL and related technologies.

Contents

Preface xxvii
About the Authors xxxv
Introduction 1

Part I: The Old Testament

Chapter 1 Introduction to 3D Graphics and OpenGL 9
Chapter 2 Using OpenGL 33
Chapter 3 Drawing in Space: Geometric Primitives and Buffers 73
Chapter 4 Geometric Transformations: The Pipeline 127
Chapter 5 Color, Materials, and Lighting: The Basics 173
Chapter 6 More on Colors and Materials 229
Chapter 7 Imaging with OpenGL 251
Chapter 8 Texture Mapping: The Basics 303
Chapter 9 Texture Mapping: Beyond the Basics 341
Chapter 10 Curves and Surfaces 377
Chapter 11 It's All About the Pipeline: Faster Geometry Throughput 421
Chapter 12 Interactive Graphics 457
Chapter 13 Occlusion Queries: Why Do More Work Than You Need To? 481
Chapter 14 Depth Textures and Shadows 495

Part II: The New Testament

Chapter 15 Programmable Pipeline: This Isn't Your Father's OpenGL 515
Chapter 16 Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen 547
Chapter 17 Fragment Shading: Empower Your Pixel Processing 567
Chapter 18 Advanced Buffers 601

Part III: The Apocrypha

Chapter 19 Wiggle: OpenGL on Windows 641
Chapter 20 OpenGL on Mac OS X 685
Chapter 21 OpenGL on Linux 713
Chapter 22 OpenGL ES — OpenGL on the Small 735

Appendix A Further Reading/References 773
Appendix B Glossary 777
Appendix C API Reference 783
Index 1141

 [Download OpenGL SuperBible: Comprehensive Tutorial and Reference.pdf](#)

 [Read Online OpenGL SuperBible: Comprehensive Tutorial and Reference](#)

[...pdf](#)

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition)

By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel

OpenGL ® SuperBible, Fourth Edition , begins by illuminating the core techniques of “classic” OpenGL graphics programming, from drawing in space to geometric transformations, from lighting to texture mapping. The authors cover newer OpenGL capabilities, including OpenGL 2.1’s powerful programmable pipeline, vertex and fragment shaders, and advanced buffers. They also present thorough, up-to-date introductions to OpenGL implementations on multiple platforms, including Windows, Mac OS X, GNU/Linux, UNIX, and embedded systems.

Coverage includes

- An entirely new chapter on OpenGL ES programming for handhelds
- Completely rewritten chapters on OpenGL for Mac OS X and GNU/Linux
- Up-to-the-minute coverage of OpenGL on Windows Vista
- New material on floating-point color buffers and off-screen rendering
- In-depth introductions to 3D modeling and object composition
- Expert techniques for utilizing OpenGL’s programmable shading language
- Thorough coverage of curves, surfaces, interactive graphics, textures, shadows, and much more
- A fully updated API reference, and an all-new section of full-color images

You’ll rely on this book constantly—whether you’re learning OpenGL for the first time, deepening your graphics programming expertise, upgrading from older versions of OpenGL, or porting applications from other environments.

Now part of the OpenGL Technical Library—The official knowledge resource for OpenGL developers

The OpenGL Technical Library provides tutorial and reference books for OpenGL. The Library enables programmers to gain a practical understanding of OpenGL and shows them how to unlock its full potential. Originally developed by SGI, the Library continues to evolve under the auspices of the OpenGL Architecture Review Board (ARB) Steering Group (now part of the Khronos Group), an industry consortium responsible for guiding the evolution of OpenGL and related technologies.

Contents

Preface xxvii

About the Authors xxxv

Introduction 1

Part I: The Old Testament

Chapter 1 Introduction to 3D Graphics and OpenGL 9

Chapter 2 Using OpenGL 33

Chapter 3 Drawing in Space: Geometric Primitives and Buffers 73

Chapter 4 Geometric Transformations: The Pipeline 127

Chapter 5	Color, Materials, and Lighting: The Basics	173
Chapter 6	More on Colors and Materials	229
Chapter 7	Imaging with OpenGL	251
Chapter 8	Texture Mapping: The Basics	303
Chapter 9	Texture Mapping: Beyond the Basics	341
Chapter 10	Curves and Surfaces	377
Chapter 11	It's All About the Pipeline: Faster Geometry Throughput	421
Chapter 12	Interactive Graphics	457
Chapter 13	Occlusion Queries: Why Do More Work Than You Need To?	481
Chapter 14	Depth Textures and Shadows	495

Part II: The New Testament

Chapter 15	Programmable Pipeline: This Isn't Your Father's OpenGL	515
Chapter 16	Vertex Shading: Do-It-Yourself Transform, Lighting, and Texgen	547
Chapter 17	Fragment Shading: Empower Your Pixel Processing	567
Chapter 18	Advanced Buffers	601

Part III: The Apocrypha

Chapter 19	Wiggle: OpenGL on Windows	641
Chapter 20	OpenGL on Mac OS X	685
Chapter 21	OpenGL on Linux	713
Chapter 22	OpenGL ES — OpenGL on the Small	735

Appendix A Further Reading/References 773

Appendix B Glossary 777

Appendix C API Reference 783

Index 1141

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel Bibliography

- Rank: #1539097 in Books
- Brand: Addison-Wesley Professional
- Published on: 2007-06-28
- Ingredients: Example Ingredients
- Original language: English
- Number of items: 1
- Dimensions: 9.00" h x 1.62" w x 7.37" l, 3.95 pounds
- Binding: Paperback
- 1248 pages

[Download OpenGL SuperBible: Comprehensive Tutorial and Reference \(4th Edition\) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel](#) ...pdf

[Read Online OpenGL SuperBible: Comprehensive Tutorial and Reference \(4th Edition\) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel](#) ...pdf

My career has been built on a long history of making "stupid" choices and accidentally being right. First, I went to Microsoft's DOS, instead of the wildly popular CP/M. Later, I recall, friends counseled me that Windows was dead, and too hard to program for, and that OS/2 was the future (you couldn't lose by sticking with IBM, they'd say).

Just got lucky, I guess.

There were a few other minor wrong turns that just happened to fortunately have me pointed away from some other collapsing industry segment, but my next really big stupid decision was writing the first edition of this book. I had already built a nice comfortable career out of fixing SQL database problems, and was making the transition to large-scale enterprise IT solutions in the healthcare industry. A book on OpenGL? I had no idea what I was doing. The first time I read the official OpenGL specification, I had to all but breathe in a paper bag, my first co-author quit in disgust, and the whole project was very nearly canceled before the book was half-finished.

As soon as the book came out, I had some meager credibility outside my normal field of expertise. I was offered a job at Lockheed-Martin/Real3D doing "real" OpenGL work. My then-current boss (God bless you, David, wherever you are!) tried really hard to talk me out of throwing my career away. Everybody knows, he insisted, that whatever Microsoft does is going to be the way the industry goes, and Microsoft's Taligent (no, not the operating system, but a 3D standard predating Direct 3D) graphics platform was going to bury OpenGL into obscurity. Besides, there was only one other book on OpenGL in existence; how big a thing could it possibly be?

Eleven years have passed, and as I finish yet the fourth edition of this book (and looking at a shelf full of OpenGL books), the number of people reading this who remember the short-lived hype of Taligent would probably fit in the back of my minivan. An OpenGL engineer I used to know at IBM had in her e-mail signature: "OpenGL. It's everywhere. Do the math." This has never been truer than it is today.

OpenGL today is the industry-leading standard graphics API on nearly every conceivable platform. This includes not only desktop Windows PCs and Macs, but UNIX workstations, location-based entertainment systems, major game consoles (all but one), hand-held gaming devices, cellphones, and a myriad of other embedded systems such as avionic and vehicle instrumentation.

Across platforms, OpenGL is the undisputed champion of 3D content creation applications, 3D games, visualization, simulation, scientific modeling, and even 2D image and video editing. OpenGL's widespread success can be attributed to its elegance and ease of use, its power and flexibility, and the overwhelming support it has received from the developer and IHV communities. OpenGL can be extended as well, providing all the benefits of an open standard, as well as giving vendors the ability to add their own proprietary added value to implementations.

You have probably heard that programmable hardware is the future of 3D graphics programming, and of graphics APIs. This is no longer true. Programmable hardware is no longer in the future; it is here now, today, even on the lowest cost motherboard embedded 3D chipsets. It is not a fluke that this edition follows the last at the closest interval of the series. The pace of evolving graphics technology is simply staggering, and this edition brings you up-to-date on the now-latest OpenGL version 2.1.

We have reinforced the chapters on fixed-pipeline programming, which is not going away anytime soon, and have affectionately deemed them "The Old Testament."; still relevant, illustrative, and the foundation on which the "New Testament" of programmable hardware is based. I find the analogy quite appropriate, and I would refute anyone who thinks the fixed pipeline is completely dead and irrelevant. The rank and file of application developers (not necessarily cutting-edge game developers) would, I'm sure, agree.

That said, we have still trimmed some dead weight. Color Index mode is ignored as much as possible, some old paletted rendering material from the Windows chapter has been pruned, and we have eliminated all the old low-level assembly-style shader material to make room for updated and expanded coverage of the high-level shading language (GLSL). You'll also find a whole new chapter on OpenGL on hand-held systems, totally rewritten Mac OS X and Linux chapters, and a really great new chapter on advanced buffer techniques such as offscreen rendering, and floating-point textures.

Another big change some readers will notice is that the OpenGL SuperBible has been acquired and adopted into the Addison-Wesley Professional OpenGL series. I can't begin to express how grateful I am and humbled I feel by this honor. I myself have worn out the covers on at least one edition of every volume in this series.

One of the reasons, I think, for the longevity of this book has been the unique approach it takes among OpenGL books. As much as possible, we look at things through the eyes of someone who is excited by 3D graphics but knows very little about the topic. The purpose of a tutorial is to get you started, not teach you everything you will ever need to know. Every professional knows that you never reach this place. I do occasionally get some criticism for glossing over things too much, or not explaining things according to the strictest engineering accuracy. These almost never come from those for whom this book was intended. We hope for a great many of you that this will be your first book on OpenGL and 3D graphics. We hope for none of you that it will be your last.

Well, I did make one really "smart" decision about my career once. Once upon a time in the early 1980s, I was a student looking at a computer in an electronics store. The salesman approached and began making his pitch. I told him I was just learning to program and was considering an Amiga over his model. I was briskly informed that I needed to get serious with a computer that the rest of the world was using. An Amiga, he told me, was not good for anything but "making pretty pictures." No one, he assured me, could make a living making pretty pictures on his computer. Unfortunately, I listened to this "smart" advice and regretted it for over ten years. Thank God I finally got stupid.

As for making a living "making pretty pictures"? Do the math.

Oh, and my latest stupid decision? I've left Windows and switched to the Mac. Time will tell if my luck holds out.

—Richard S. Wright Jr.

Preface to the Previous, Third Edition

I have a confession to make. The first time I ever heard of OpenGL was at the 1992 Win32 Developers Conference in San Francisco. Windows NT 3.1 was in early beta (or late alpha), and many vendors were present, pledging their future support for this exciting new graphics technology. Among them was a company called Silicon Graphics, Inc. (SGI). The SGI representatives were showing off their graphics workstations and playing video demos of special effects from some popular movies. Their primary purpose in this booth, however, was to promote a new 3D graphics standard called OpenGL. It was based on SGI's proprietary IRIS GL and was fresh out of the box as a graphics standard. Significantly, Microsoft was pledging future support for OpenGL in Windows NT.

I had to wait until the beta release of NT 3.5 before I got my first personal taste of OpenGL. Those first OpenGL-based screensavers only scratched the surface of what was possible with this graphics API. Like many other people, I struggled through the Microsoft help files and bought a copy of the *OpenGL Programming Guide* (now called simply "The Red Book" by most). The Red Book was not a primer,

however, and it assumed a lot of knowledge that I just didn't have.

Now for that confession I promised. How did I learn OpenGL? I learned it by writing a book about it. That's right, the first edition of the *OpenGL SuperBible* was me learning how to do 3D graphics myself...with a deadline! Somehow I pulled it off, and in 1996 the first edition of the book you are holding was born. Teaching myself OpenGL from scratch enabled me somehow to better explain the API to others in a manner that a lot of people seemed to like. The whole project was nearly canceled when Waite Group Press was acquired by another publisher halfway through the publishing process. Mitchell Waite stuck to his guns and insisted that OpenGL was going to be "the next big thing" in computer graphics. Vindication arrived when an emergency reprint was required because the first run of the book sold out before ever making it to the warehouse.

That was a long time ago, and in what seems like a galaxy far, far away...

Only three years later 3D accelerated graphics were a staple for even the most stripped-down PCs. The "API Wars," a political battle between Microsoft and SGI, had come and gone; OpenGL was firmly established in the PC world; and 3D hardware acceleration was as common as CD-ROMs and sound cards. I had even managed to turn my career more toward an OpenGL orientation and had the privilege of contributing in some small ways to the OpenGL specification for version 1.2 while working at Lockheed Martin/Real 3D. The second edition of this book, released at the end of 1999, was significantly expanded and corrected. We even made some modest initial attempts to ensure that all the sample programs were more friendly in non-Windows platforms by using the GLUT framework.

Now, nearly five years later (eight since the first edition!), we bring you yet again another edition, the third, of this book. OpenGL is now without question the premier cross-platform real-time 3D graphics API. Excellent OpenGL stability and performance are available on even the most stripped-down bargain PC today. OpenGL is also the standard for UNIX and Linux operating systems, and Apple has made OpenGL a core fundamental technology for the new Mac OS X operating system. OpenGL is even making inroads via a new specification, OpenGL ES, into embedded and mobile spaces. Who would have thought five years ago that we would see Quake running on a cellphone?

It is exciting that, today, even laptops have 3D acceleration, and OpenGL is truly everywhere and on every mainstream computing platform. Even more exciting, however, is the continuing evolution of computer graphics hardware. Today, most graphics hardware is programmable, and OpenGL even has its own shading language, which can produce stunningly realistic graphics that were undreamed of on commodity hardware back in the last century (I just had to squeeze that in someplace!).

With this third edition, I am pleased that we have added Benjamin Lipchak as a coauthor. Benj is primarily responsible for the chapters that deal with OpenGL shader programs; and coming from the ARB groups responsible for this aspect of OpenGL, he is one of the most qualified authors on this topic in the world.

We have also fully left behind the "Microsoft Specific" characteristics of the first edition and have embraced a more multiplatform approach. All the programming examples in this book have been tested on Windows, Mac OS X, and at least one version of Linux. There is even one chapter apiece on these operating systems, with information about using OpenGL with native applications.

—Richard S. Wright Jr.

Read OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel for online ebook

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel books to read online.

Online OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel ebook PDF download

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel Doc

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel MobiPocket

OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel EPub

1EL2W75U0SJ: OpenGL SuperBible: Comprehensive Tutorial and Reference (4th Edition) By Richard S. Wright, Benjamin Lipchak, Nicholas Haemel